Bioethanol From Oil Palm Empty Fruit Bunch (OPEFB): a Review Pretreatment and Enzymatic Hydrolysis

Main Article Content

Irwan Irwan
Laode Agus Salim

Abstract

The fossil fuel crisis will remain a major topic that needs to be looked for a solution together until other alternative fuels are found. Bioethanol has now become a trend and focus of researchers in Indonesia and various parts of the world as an environmentally friendly alternative energy and given the potential of Indonesia as one of the largest palm oil-producing countries in the world with the amount of lignocellulosic biomass waste such as Oil Palm Empty Fruit Bunch (OPEFB). OPFEB is the most desirable and realistic alternative to substitute fossil fuels as the main energy source. The use of these wastes as renewable fuels is very significant in terms of expanding economic value and solving environmental problems. This review paper offers an insight into the current creative approaches to the development of OPEFB such as characteristics of OPEFB, pretreatment process, and enzymatic hydrolysis.

Article Details

How to Cite
Irwan, I., & Agus Salim, L. (2021). Bioethanol From Oil Palm Empty Fruit Bunch (OPEFB): a Review Pretreatment and Enzymatic Hydrolysis. International Journal of Transdisciplinary Knowledge, 2(2), 1–14. https://doi.org/10.31332/ijtk.v2i2.18
Section
Articles

References

Adsul, M., Sandhu, S. K., Singhania, R. R., Gupta, R., Puri, S. K., & Mathur, A. (2020). Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme and Microbial Technology, 133, 109442.

Afriani, A., & Kardiansyah, T. (2015). Potensi dan peluang tandan kosong sawit sebagai bahan baku pulp dan kertas: Studi kasus di Indonesia. Jurnal Selulosa, 5(02), 79–88.

Agustini, L., & Efiyanti, L. (2015). Pengaruh perlakuan delignifikasi terhadap hidrolisis selulosa dan produksi etanol dari limbah berlignoselulosa. Jurnal Penelitian Hasil Hutan, 33(1), 69–80.

Ajala, A. S., Adeoye, A. O., Olaniyan, S. A., & Fasonyin, O. T. (2020). A study on effect of fermentation conditions on citric acid production from cassava peels. Scientific African, 8, e00396.

Ali, N., Aziz, C. A. C., & Hassan, O. (2015). Alkali pretreatment and acid hydrolysis of coconut pulp and empty fruit bunch to produce glucose. Jurnal Teknologi, 74(7).

Anser, M. K., Hanif, I., Alharthi, M., & Chaudhry, I. S. (2020). Impact of fossil fuels, renewable energy consumption and industrial growth on carbon emissions in Latin American and Caribbean economies. Atmósfera, 33(3), 201–213.

Arbaain, E. N. N., Bahrin, E. K., Ibrahim, M. F., Ando, Y., & Abd-Aziz, S. (2019). Biological Pretreatment of Oil Palm Empty Fruit Bunch by Schizophyllum commune ENN1 without Washing and Nutrient Addition. Processes, 7(7), 402.

Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61.

Bai, X., Wang, X., Wang, S., Ji, X., Guan, Z., Zhang, W., & Lu, X. (2017). Functional studies of β-glucosidases of Cytophaga hutchinsonii and their effects on cellulose degradation. Frontiers in Microbiology, 8, 140.

Balat, M. (2009). Bioethanol as a vehicular fuel: a critical review. Energy Sources, Part A, 31(14), 1242–1255.

Bensah, E. C., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 2013.

Bonfiglio, F., Cagno, M., Rey, F., Torres, M., Böthig, S., Menéndez, P., & Mussatto, S. I. (2019). Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass and Bioenergy, 121, 41–47.

Briefing, U. S. (2013). International energy outlook 2013. US Energy Information Administration.

Burhani, D., Putri, A. M. H., Waluyo, J., Nofiana, Y., & Sudiyani, Y. (2017). The effect of two-stage pretreatment on the physical and chemical characteristic of oil palm empty fruit bunch for bioethanol production. In AIP Conference Proceedings (Vol. 1904, p. 20016). AIP Publishing LLC.

Cabrera, E., Muñoz, M. J., Martín, R., Caro, I., Curbelo, C., & Díaz, A. B. (2014). Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7.

Canilha, L., Chandel, A. K., Suzane dos Santos Milessi, T., Antunes, F. A. F., Luiz da Costa Freitas, W., das Graças Almeida Felipe, M., & da Silva, S. S. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012.

Chen, W.-C., Lin, Y.-C., Ciou, Y.-L., Chu, I.-M., Tsai, S.-L., Lan, J. C.-W., … Wei, Y.-H. (2017). Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. In Journal of the Taiwan Institute of Chemical Engineers (Vol. 79, pp. 43–48). Elsevier.

Chintagunta, A. D., Jacob, S., & Banerjee, R. (2016). Integrated bioethanol and biomanure production from potato waste. Waste Management, 49, 320–325.

Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., & Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia, 68, 107–116. https://doi.org/10.1016/j.egypro.2015.03.238

Elsayed, M., Abomohra, A. E.-F., Ai, P., Wang, D., El-Mashad, H. M., & Zhang, Y. (2018). Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: comparison of structural properties and energy output. Bioresource Technology, 268, 183–189.

Ethaib, S., Omar, R., Mustapa Kamal, S. M., Awang Biak, D. R., Syam, S., & Harun, M. Y. (2017). Microwave-assisted pretreatment of sago palm bark. Journal of Wood Chemistry and Technology, 37(1), 26–42.

Fuadi, A. M., & Harismah, K. (2014). The Influence of Temperature, Time and Initial Heating on Enzymatic Hydrolysis of a Used Paper to Produce Glucose.

Gargulak, J. D., Lebo, S. E., & McNally, T. J. (2000). Lignin. Kirk‐Othmer Encyclopedia of Chemical Technology, 1–26.

Germec, M., Kartal, F. K., Bilgic, M., Ilgin, M., Ilhan, E., Güldali, H., … Turhan, I. (2016). Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnology Progress, 32(4), 872–882.

Ibarra-Díaz, N., Castañón-Rodríguez, J. F., Gómez-Rodríguez, J., & Aguilar-Uscanga, M. G. (2020). Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. Biomass Conversion and Biorefinery, 1–10.

Kamsani, N., Salleh, M. M., Basri, S. A., Mohamad, S. E., Abd Aziz, S., & Kamaruddin, K. (2018). Effects of surfactant on the enzymatic degradation of oil palm empty fruit bunch (OPEFB). Waste and Biomass Valorization, 9(5), 845–852.

Karimi, K., Shafiei, M., & Kumar, R. (2013). Progress in physical and chemical pretreatment of lignocellulosic biomass. In Biofuel technologies (pp. 53–96). Springer.

Kresnawaty, I., Putra, S. M., Budiani, A., & Darmono, T. W. (2017). Konversi tandan kosong kelapa sawit (TKKS) menjadi arang hayati dan asap cair.

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.

Li, Y., Cui, J., Zhang, G., Liu, Z., Guan, H., Hwang, H., … Wang, P. (2016). Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresource Technology, 214, 144–149.

Liu, Y.-K., Chen, W.-C., Huang, Y.-C., Chang, Y.-K., Chu, I.-M., Tsai, S.-L., & Wei, Y.-H. (2017). Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. Journal of Bioscience and Bioengineering, 124(2), 184–188.

Manmai, N., Unpaprom, Y., Ponnusamy, V. K., & Ramaraj, R. (2020). Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel, 278, 118262.

Mondylaksita, K., Ferreira, J. A., Millati, R., Budhijanto, W., Niklasson, C., & Taherzadeh, M. J. (2020). Recovery of high purity lignin and digestible cellulose from oil palm empty fruit bunch using low acid-catalyzed organosolv pretreatment. Agronomy, 10(5), 674.

Moset, V., Xavier, C. de A. N., Feng, L., Wahid, R., & Møller, H. B. (2018). Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. Journal of Cleaner Production, 172, 1391–1398.

Muryanto, M., Sudiyani, Y., & Abimanyu, H. (2016). Optimasi proses perlakuan awal NaOH tandan kosong kelapa sawit untuk menjadi bioetanol. Jurnal Kimia Terapan Indonesia (Indonesian Journal of Applied Chemistry), 18(01), 27–35.

Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-Pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution, 234, 190–213.

Nannipieri, P., Trasar-Cepeda, C., & Dick, R. P. (2018). Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 54(1), 11–19.

Nazir, M. S., Wahjoedi, B. A., Yussof, A. W., & Abdullah, M. A. (2013). Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources, 8(2), 2161–2172.

Neesa, L., Jahan, N., Khan, A. A. N., & Rahman, M. S. (2017). Cellulolytic Bacillus may or may not Produce β-Glucosidase due to their Environmental Origin–A Case Study. Journal of Microbiology and Biotechnology Research, 7, 30–38.

Ni’mah, L., Ghofur, A., & Samlawi, A. K. (2016). Pemanfaatan serat kelapa sawit untuk pembuatan gasohol (premium-bioetanol) dengan pretreatment lignocelulotic material dan fermentasi dengan menggunakan ragi tape dan NPK. In Prosiding Seminar Lahan Basah Jilid (Vol. 2, pp. 647–653).

Nurdiawati, A., Novianti, S., Zaini, I. N., Nakhshinieva, B., Sumida, H., Takahashi, F., & Yoshikawa, K. (2015). Evaluation of hydrothermal treatment of empty fruit bunch for solid fuel and liquid organic fertilizer co-production. Energy Procedia, 79, 226–232.

Nurdin, M., Abimanyu, H., Naufalsar, M., Maulidiyah, M., Arifin, Z. S., Wibowo, D., & La, O. A. S. (2021). Examination the Hydrolysis Feasibility of OPEFB Biomass Using Aspergillus niger as Cellulase Enzyme-producing Fungus. Journal of Oleo Science, ess20282.

Patil, R., Cimon, C., Eskicioglu, C., & Goud, V. (2021). Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production. Renewable Energy, 179, 467–474.

Prasad, S., Kumar, S., Yadav, K. K., Choudhry, J., Kamyab, H., Bach, Q.-V., … Gupta, N. (2020). Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy, 190, 116422.

Raghavi, S., Sindhu, R., Binod, P., Gnansounou, E., & Pandey, A. (2016). Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technology, 199, 202–210.

Richana, N., Winarti, C., Hidayat, T., & Prastowo, B. (2015). Hydrolysis of empty fruit bunches of palm oil (Elaeis Guineensis Jacq.) by chemical, physical, and enzymatic methods for bioethanol production. International Journal of Chemical Engineering and Applications, 6(6), 422.

Rosazley, R., Shazana, M. Z., Izzati, M. A., Fareezal, A. W., Rushdan, I., & Ainun, Z. M. A. (2016). Characterization of nanofibrillated cellulose produced from oil palm empty fruit bunch fibers (OPEFB) using ultrasound. Journal of Contemporary Issues and Thought, 6, 30–37.

Saroj, P., Manasa, P., & Narasimhulu, K. (2018). Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresources and Bioprocessing, 5(1), 1–14.

Sebayang, A. H., Masjuki, H. H., Ong, H. C., Dharma, S., Silitonga, A. S., Mahlia, T. M. I., & Aditiya, H. B. (2016). A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. Rsc Advances, 6(18), 14964–14992.

SERAT, P. P. P. M. T. (2018). Pengaruh Proses Pemutihan Multi Tahap Serat Selulosa Dari Limbah Tandan Kosong Kelapa Sawit. Jurnal Kimia Dan Kemasan, 40(2), 71–78.

Simatupang, H., Nata, A., & Herlina, N. (2012). Studi isolasi dan rendemen lignin dari tandan kosong kelapa sawit (TKKS). Jurnal Teknik Kimia USU, 1(1), 20–24.

Singh, A., & Bishnoi, N. R. (2013). Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Industrial Crops and Products, 44, 283–289.

Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

Sudiyani, Y., Styarini, D., Triwahyuni, E., Sembiring, K. C., Aristiawan, Y., Abimanyu, H., & Han, M. H. (2013). Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot–scale unit. Energy Procedia, 32, 31–38.

Tahir, A. A., Barnoh, N. F. M., Yusof, N., Said, N. N. M., Utsumi, M., Yen, A. M., … Mohamad, S. E. (2019). Microbial diversity in decaying oil palm empty fruit bunches (OPEFB) and isolation of lignin-degrading bacteria from a tropical environment. Microbes and Environments, ME18117.

Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753.

Tareen, A. K., Punsuvon, V., & Parakulsuksatid, P. (2020). Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech, 10(4), 1–12.

Tayyab, M., Noman, A., Islam, W., Waheed, S., Arafat, Y., Ali, F., … Lin, W. (2018). Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review. Appl Ecol Environ Res, 16(1), 225–249.

Treebupachatsakul, T., Nakazawa, H., Shinbo, H., Fujikawa, H., Nagaiwa, A., Ochiai, N., … Shioya, K. (2016). Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Journal of Bioscience and Bioengineering, 121(1), 27–35.

Treebupachatsakul, T., Shioya, K., Nakazawa, H., Kawaguchi, T., Morikawa, Y., Shida, Y., … Okada, H. (2015). Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. Journal of Bioscience and Bioengineering, 120(6), 657–665.

Triwahyuni, E., Muryanto, Y. S., & Abimanyu, H. (2015). The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia, 68, 138–146.

Wang, F., Jiang, Y., Guo, W., Niu, K., Zhang, R., Hou, S., … Jia, C. (2016). An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnology for Biofuels, 9(1), 1–10.

Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263.

Xue, D., Yao, D., Sukumaran, R. K., You, X., Wei, Z., & Gong, C. (2020). Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresource Technology, 302, 122902.

Yahya, A., Sye, C. P., Ishola, T. A., & Suryanto, H. (2010). Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresource Technology, 101(22), 8736–8741.

Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3–28). Elsevier.

Yu, H., Xiao, W., Han, L., & Huang, G. (2019). Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresource Technology, 282, 69–74.

Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1–3.

Zheng, Y., Zhang, S., Miao, S., Su, Z., & Wang, P. (2013). Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. Journal of Biotechnology, 166(3), 135–143.

Zhou, Q., Xu, J., Kou, Y., Lv, X., Zhang, X., Zhao, G., Liu, W. (2012). Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryotic Cell, 11(11), 1371–1381.